Using High Early Concrete or Accelerators

One Hot Topic

Matt McCombs - Martin Marietta Dave Figurski - LafargeHolcim Tom McNamee - Master Builders Solutions

COLORADO READY MIXED CONCRETE ASSOCIATION

Introductions

- Dave Figurski Tech Service Engineer, LafargeHolcim
- Tom McNamee Mtn. Region Manager, Master Builders Solutions
- Matt McCombs RMX Quality Manager, Martin Marietta

Why this presentation?

- Clarify terminology
- To get municipalities, specifiers, RMX suppliers, and contractors all on same page
- To help ensure contractors receive concrete performance they need
- Realistic expectations

Basics of Cement Manufacturing

- Heat causes chemical changes in materials
- Changes are locked in place via rapid cooling (quenching)

Basics of Hydration

- Cement reacts chemically with water, creating hydration products
- C₃S <u>early strength development</u>
 - Generates C-S-H (glue that holds concrete together)
- C₃A Heat of Hydration & <u>Time of Set</u>
 - Dissolving in water releases heat (Heat of Hydration...exothermic)
 - This crystal growth is responsible for setting of concrete

The effectiveness in these depend on:

- Quantity
- Rate of Reaction

How materials affect strength gain & time of set?

<u>Cement</u>

- Quantity in a yard
- Physical Properties
 - Fineness
- Chemical Properties
 - C_3 S content
 - C_3^A content

Heat generation/ conservation is critical!

- <u>SCM's</u> fly ash, slag, natural pozzolans
 - Are not all the same...even within types
 - Typically reduce heat generation, set times, early strength
 - Generate more workable & durable concrete

How materials affect strength gain & time of set?

• Water content simplified

- More water = easier to work with
- More water = less strength/less durable

Admixtures...varies

- Can tailor the performance of the mix
- Increase workability with the same w/c
- Accelerators to decrease set times or increase strength development
- Consult ready mix with any desired changes

How other conditions affect strength gain & time of set?

- Environment
 - Anything that reduces heat
 - Ground/ambient temps.
 - Shade
 - Frozen ground concerns
 - Infrared thermometers are handy

How other conditions affect strength gain & time of set?

- Cure Temperatures
 - What are you trying to accomplish??
- Hydration is temperature/time dependent
 - Maturity

	Total Cem.	750 III @ 0.40	705 @ 0.40 w/Accel	705 @ 0.45	
	C150 Type III	564			Γ
	595 IPN		705	705	Γ
	Class F Ash	141			Ι
	3/4"	1493	1450	1450	
	Sand	1250	1215	1235	Ι
	Water	278	292	318	
	w/c	0.394	0.414	0.451	Ι
	s/a	0.46	0.46	0.46	
	HRWR (oz/cwt)	6.0	5.4	4.4	1
	Accelerator (oz/cwt)	0.0	35.0	0.0	1
	Air	5.0%	8.0%	6.2%	I
	Slump (in)	8 1/4	9 3/4	8 1/4	
Individual	18hr Heat Cure	4,580	3,160	3,110	
Cylinder	(achieved 100F)	4,800	3,320	3,160	
Breaks	18hr-(50F estimated)	742	560	290	
2	0.75	4,690	3,240	3,135	
	7	8,360	7,790	6,600	
Averages	15	9,000	8,170	7,200	
	28	9,163	8,443	7,530	1
	7-D % of 28-D	91%	92%	88%	1

Measuring Set time (Accelerated)

- Initial/Final Set (Penetration Resistance)
 - Initial = 500 psi
 - Final = 4,000 psi
 - Not comparable to compressive strength
- Finishing In Practice
 - Support weight of finisher
 - ¼" shoe depression (15-25psi) before floating
 - Allows for mix stiffening & bleed water to

cease

Measuring Strength (High Early)

- Measured in psi
- Minimum strengths req'd for opening structure
 - Opening road to traffic
 - Removal of formwork for elevated deck
- Time and Temp dependent (Maturity)

Set Times

Setting Time of Concrete at Various Temperatures

Temperature °F	Setting Time hrs.
70	6
60	8
50	11
40	14
32 Sz	Freezes

Basics of Set Time

Accelerated Set and High Early Strength - Levers to Pull

Speed up the early hydration (heat gain) of concrete by using one or more of the following:

Additional Portland cement Set HES

Use Type III Cement	Set HES
Hot water	Set
Heat Aggregate	Set
Calcium chloride	Set HES
Non-chloride accelerator	Set HES

Affects on Set Time

Cement Content on Setting Time

Concrete and Ambient Temperature: 50 °F (10 °C)

Non-Chloride Effect Setting Time

ACI 212.3 - Accelerating Admixtures for Concrete

- Reduce time to initial set
- Expedite the start of finishing operations
- Reduce the total time required for curing and protection
- Increase the <u>rate of early strength development</u> to permit earlier removal of forms and earlier opening of construction for service

Calcium Chloride

DON'T USE WHEN REINFORCING IS IN THE CONCRETE

- Don't use with ASR potential Aggregates
- Don't use with high sulfate soils present
- Don't use with colored concrete
- Don't use over 2% by weight of cement

Non-chloride Accelerators

- •Non-Corrosive to reinforcing steel
- •Accelerates setting time of concrete, allowing for faster completion of slabs
- •Reduced in-place concrete costs
- •Won't blotch colored concrete
- •Can add more than 2% to get higher early strengths

How contractors order accelerator?

- Typically based on % Calcium Chloride
 - What is 1%?
 - What is 2%?

- Dose of Non-Chloride Accelerator
- Amount required for Same Set Time of Calcium Chloride under Same Conditions
- Predictable Set Time is what Contractors want

High Early Strength: Commercial Projects

Applications Foundation Walls Elevated Slabs Columns Beams

Define what is required: Hardened Properties X Strength at Y hours Shrinkage Permeability Concrete temp **Plastic Properties** Slump / Spread Air Entrainment

High Early Strength: Pavement Repairs

Freeways in need of repair and rehabilitation

Contractors face **\$\$\$** fines for delays in opening freeway

Commuter impatience with lane closures !!!

High Early Strength Data with Type III Cement

Flexural Strength	<u>n psi</u>			
4-hour	480			
24-hour	855			
28-day	1250			
Compressive Strength				
Compressive Str	<u>ength</u>			
<u>Compressive Str</u> 4-hour	<u>ength</u> 4130			

Set Time For Finishing Concrete Flatwork – Mix Design

- Cement type and performance
 - Type I/II prevalent locally (Type III is available & sets faster)
- SCM type and performance
 - \circ ~ Locally C Ash, F Ash and RFA ~
- Total cementitious and SCM replacement content
 - Straight cement reacts faster
- Water to cementitious ratio
 - Affects strength and set time
- Addition of an Accelerator
 - Calcium Chloride or Non-Calcium Chloride
 - Add more cement to the base mix

Set Time For Finishing Concrete Flatwork – Mix Design

Figure 4-2. General hydration curve delineating the five stages

Set Time For Finishing Concrete Flatwork – Mix Design

Role of Temperatures & Environment on Performance

• Temperature

- Ambient Temperature Concrete seeks ambient temperature
- Concrete Temperature Strongly influenced by ambient and environmental temperature, which impacts set times and strength gain
- Environment
 - Cold ground, forms, pumps and reinforcement
 - Humidity, wind and sunlight = dried out surface & cracks

Concrete Set Time - Lab Trials vs. Field Performance

- Lab trials reflect near perfect conditions and constant temperatures
- Field performance is impacted by ambient temperature and environmental conditions
- What could be different??

Concrete Set Time - What to ask for or specify

• What to ask for or specify:

- Ask for a place and finish plan
- This will include:
 - Mix design and set time information
 - Anticipated weather
 - Field Conditions
 - Placement Method, etc.
- Can be developed to maximize the opportunity for success.
- Involve the Ready Mix supplier and the concrete finishers in a pre-pour meeting.

Strength Gain for Opening Structures or Pavements

- Plan for success
 - How high and how early?
 - Verify anticipated weather
 - Verify anticipated pour timeframe
 - Select a mix that will work based on these inputs

How critical is curing temperature?

• How can Maturity help?

What is concrete maturity?

- Concrete maturity is:
 - <u>a non-destructive method to</u> <u>determine how far concrete</u> <u>hydration has progressed.</u>
 - This is determined through the relationship of in place concrete temperature and time, which determines strength gain.
- A maturity curve is developed in a lab according to ASTM C1074

What is concrete maturity?

- Loggers are then installed in a field placement and can be monitored to determine strength gain progress
- The loggers provide a real time value that can be compared to the maturity curve in order to determine real time, in place strength

Is your data accurate and dependable?

- The key to successfully placing high early concrete
 - Measure the strength accurately
 - Feel confident that your data is dependable

Review

- Faster Set for Finishing = Accelerated
- Early Strength for loading = High Early
- Material and Environmental conditions can both dramatically change mix performance
- Plan ahead
- Communicate your needs

COLORADO READY MIXED CONCRETE ASSOCIATION

• Contact info:

Q/A Session

o david.figurski@lafargeholcim.com

Thank you for attending!

- tom.mcnamee@mbcc-group.com
- <u>matt.mccombs@martinmarietta.com</u>

