Reducing the Carbon Footprint of Concrete

Brandon Williams

Market Development Manager CarbonCure Technologies

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© CarbonCure™ 2021

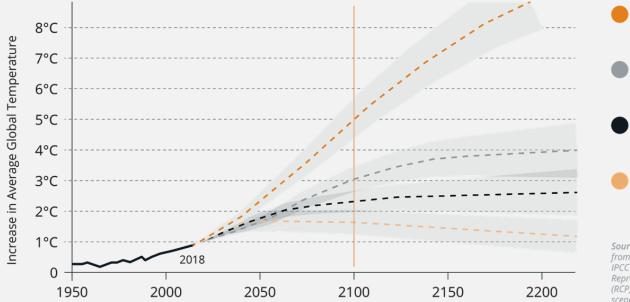
Learning Objectives

By the end of this presentation, participants will be able to:

- 1. Understand the impact of embodied carbon from the built environment and describe the means through which cement manufacturing contributes to embodied carbon.
- 2. Utilize assessment and reporting resources such as Environmental Product Declarations (EPDs) to evaluate the environmental impact of building materials.
- 3. Explore the innovative method of CO₂ mineralization as a means to reduce embodied carbon in concrete production, and describe the method's impact on the fresh and hardened properties of concrete
- 4. Embrace best practices in concrete design to reduce the carbon impact of concrete, and empower concrete producers to adopt lower carbon solutions while ensuring concrete performance requirements are maintained.

Embodied Carbon

The emissions from manufacturing, transportation, and installation of building materials.


Operational Carbon

The emissions from a building's energy consumption.

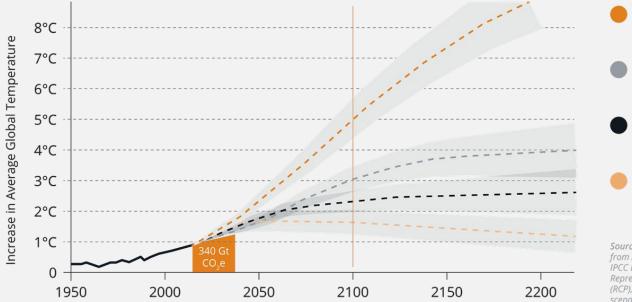
Global CO₂ Challenge

Global Temperature Projections for various RCP Scenarios

RCP8.5 Business-as-usual 2.2 trillion tons carbon

RCP6.0 emissions peak 2080 1.6 trillion tons carbon

RCP4.5 emissions peak 2040-50 1.3 trillion tons carbon


RCP2.6 (1.5°C) 0.53 trillion tons carbon zero CO₂ emissions ~2050

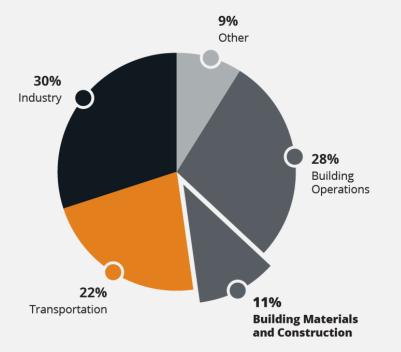
Source: Reproduced with permission from Architecture 2030; Adapted from IPCC Fifth Assessment Report, 2013. Representative Concentration Pathways (RCP), temperature projections for SRES scenarios and the RCPs.

Global CO₂ Challenge

Global Temperature Projections for various RCP Scenarios

RCP8.5 Business-as-usual 2.2 trillion tons carbon

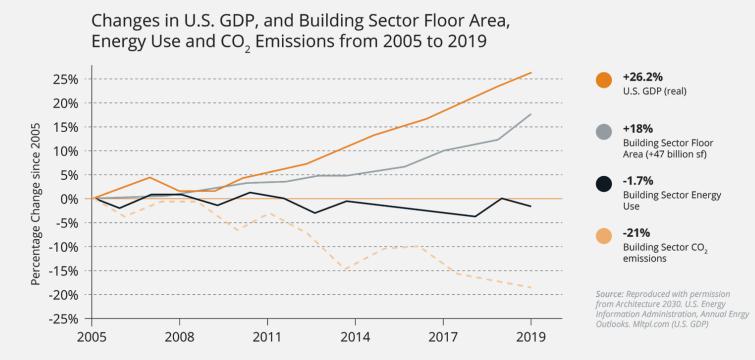
RCP6.0 emissions peak 2080 1.6 trillion tons carbon


RCP4.5 emissions peak 2040-50 1.3 trillion tons carbon

RCP2.6 (1.5°C) 0.53 trillion tons carbon zero CO₂ emissions ~2050

Source: Reproduced with permission from Architecture 2030; Adapted from IPCC Fifth Assessment Report, 2013. Representative Concentration Pathways (RCP), temperature projections for SRES scenarios and the RCPs.

Global CO₂ Emissions by Sector


Source: 2018. 2030, Inc. / Reproduced with permission from Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Reducing the Carbon Footprint of Concrete

Decoupling of Operational Emissions

Efforts by designers to create more efficient and sustainable buildings are having an impact

But what about the emissions associated with building materials?

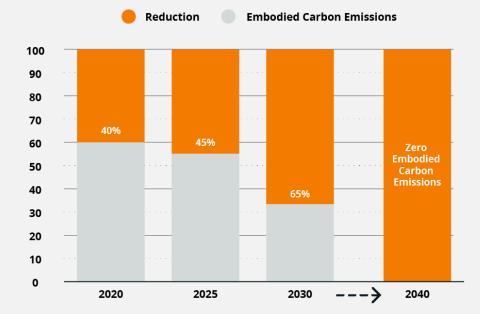
Did you know?

The world's building stock is expected to double by the year 2060. This means we're building an entire New York City every month for the next 40 years.

Did you know?

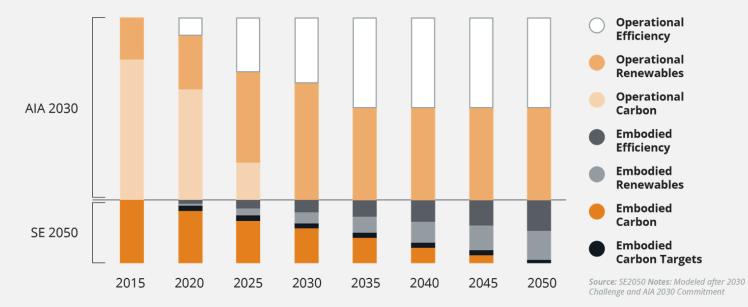
Of that new construction, embodied carbon is expected to account for nearly 50% of the buildings' total carbon emissions.

Time Value of CO₂ – New Buildings


Total Emissions of Global New Construction 2020 to 2050 **Embodied Carbon Operational Carbon** MMmt CO₂ Source: Reproduced with permission from Architecture 2030. Adapted from EIA AEO 2017 and Global ABC. Global Status YEAR 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Report 2017

Architecture 2030

"If we do not achieve a 65% reduction in total global emissions by 2030, we will have lost the opportunity to meet the 1.5-2 °C warming threshold and climate change will become irreversible. The immediate focus for embodied carbon reductions must therefore be on the next decade."


The 2030 Challenge for Embodied Carbon

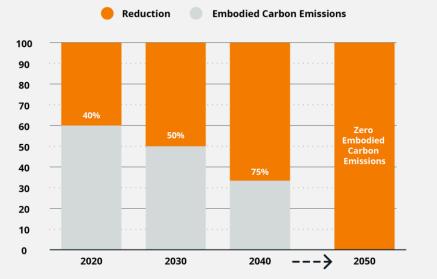
Buildings, Infrastructure, and Materials

Structural Engineers 2050

Structural Engineers 2050 Commitment Initiative

Source: SE2050

SE


ASCE

The Embodied Carbon Challenge

A multi-disciplinary challenge to achieve net-zero embodied carbon by 2050

The 2030 Challenge for Embodied Carbon

Buildings, Infrastructure, and Materials

Mission alignment with:

Leadership Forum

Source: Reproduced with permission from Architecture 2030. 2030, Inc. / Architecture 2030. All Rights Reserved.

New Emphasis on Embodied Carbon

Green buildings certification systems now address embodied carbon

LEED BD+C: New Construction | v4.1 - LEED v4.1 Building Life-Cycle Impact Reduction

Possible 5 points

2 points

Demonstrated impact reduction of at least 5% in Global Warming Potential and 2 other impact categories.

3 points

Demonstrated impact reduction of at least **10%** in Global Warming Potential and 2 other impact categories.

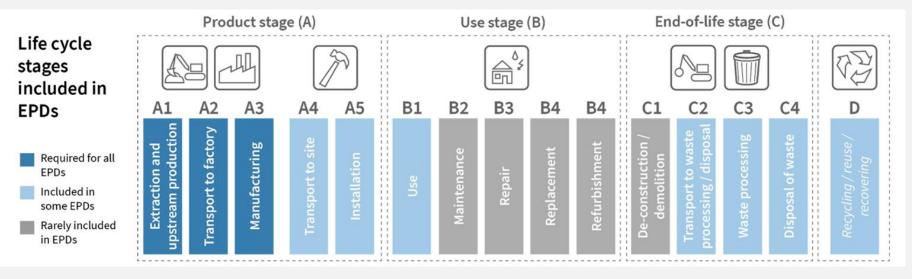
Ð

4 points

Demonstrated impact reduction of **20%** in Global Warming Potential, at least **10%** in 2 other impact categories, and building reuse and/ or use of salvaged materials

Materials & Resources

Focuses on minimizing embodied environmental impacts to support a lifecycle approach that improves performance.


Option 4: Whole Building Life Cycle Assessment (1-4 points)

Conduct a life cycle assessment and show a 10% impact reduction in embodied CO_2 emissions + 2 other impact categories shown on an Environmental Product Declaration

Life Cycle Assessment (LCA)

Independently verified in accordance with ISO 14040 and ISO 14044

Source: Carbon Leadership Forum

Environmental Product Declarations

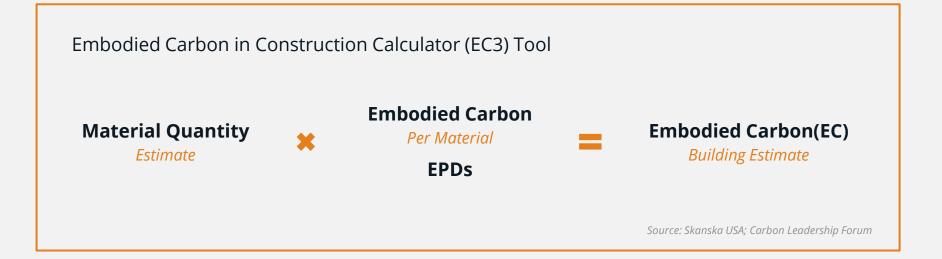
Independently-verified documents based on international standards that report the environmental impacts of a product.

Environmental Facts Functional unit = 1 yd ³ of concrete	Impact
Primary Energy Demand (BTU)	9.3x10 ⁵
Global Warming Potential (lb CO ₂ eq)	360
Acidification Potential (lb H+ eq)	40
Eutrophication Potential (lb N eq)	0.4
Ozone Depletion Potential (lb CFC-11 eq)	1.98x10 ⁻⁵
Smog Potential (lb O ₃ eq)	21

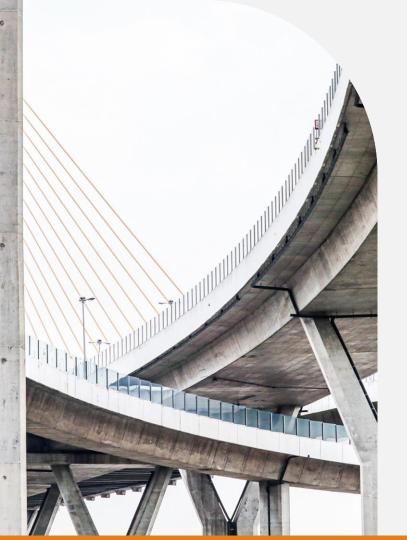
Environmental Product Declaration (EPD)

Think of EPD's as **a nutrition label for your concrete**. This tool gives transparency into the overall carbon impact.

Things to consider:


- 1. Industry and governments are driving change
- 2. Be proactive in your adoption
- **3**. EPDs report of 6 core mandatory impact indicators
- 4. Implement solutions that reduce Global Warming Potential (GWP) to gain a competitive advantage

EPD Providers: Athena, Climate Earth, NRMCA

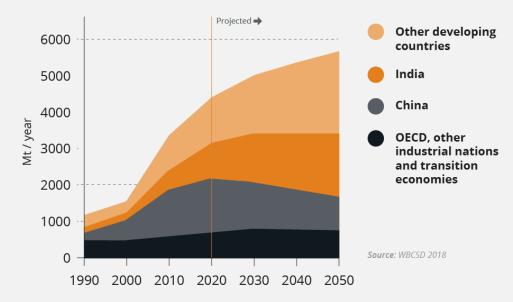

Average Cost: \$5k-\$15k

New Tools for Increased Transparency

Concrete is the most abundant man-made material in the world.

As a result, cement production creates ~7% of the world's CO₂ emissions and is one of the **largest contributors** to embodied carbon in the built environment.

Source: Architecture 2030

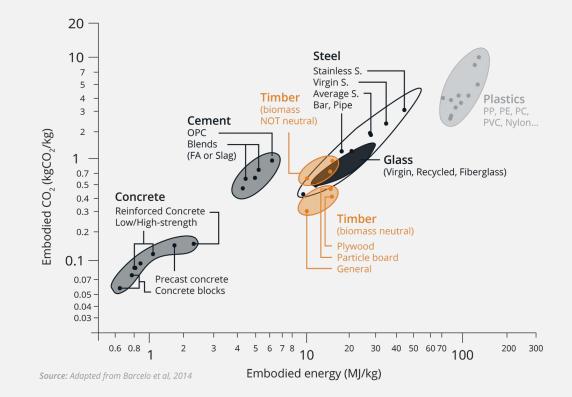

Cement makes up only 12% of the weight of concrete, but is responsible for 95% of the CO₂ footprint.

Cement Demand Projection

World Portland Cement Production 1990-2050

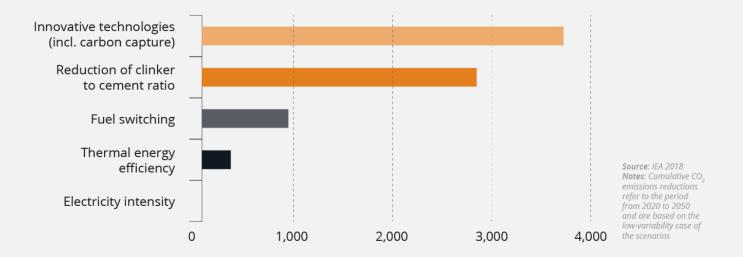
Cement demand expected to grow 12 to 23% by 2050.

-IEA, Cement Sustainability Initiative



Estimated Lifecycle Impacts of Materials

Concrete is a low impact material.


Concrete on its own has low CO₂ emissions and embodied energy for every kilogram produced (though cement is higher).

IEA Technology Roadmap

Pathway for reducing emissions in the cement and concrete sector

- 48% of emissions reductions must come from carbon capture and utilization strategies
- 37% of reductions must come from reduced clinker to cement ratios

What is CarbonCure?

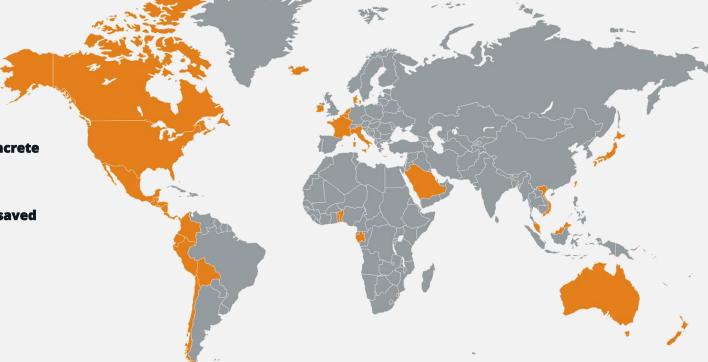
CO₂ Utilization in Concrete

CarbonCure's technology beneficially repurposes carbon dioxide **to reduce the carbon footprint of concrete without compromising concrete performance**.

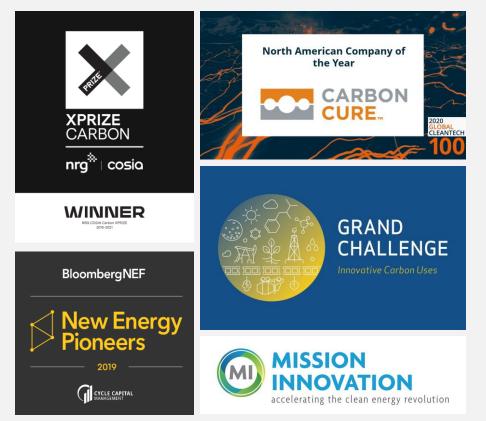
CarbonCure Concrete Impact

As of October 2021

Available in **450+ concrete plants, 6 continents**


Used in 10,800,000+ m³ / 14,100,000+ yd³ of concrete

Resulting in **126,000+ tonnes CO₂ saved**



Compliant with ASTM C494 Type S

Award-Winning Innovation

Strategic Partners

CO₂ Supply

CO₂ is captured and distributed to concrete plants by industrial gas suppliers.

Collection

CO₂ is collected from large emitters

Purification

The gas is purified by industrial suppliers

Delivery

The CO₂ is delivered to concrete plants by industrial gas suppliers

Storage

The CO₂ is stored at concrete plants in pressurized tanks

How it Works: Technology

Seamless retrofit technology that operates with no disruption to normal batching procedures

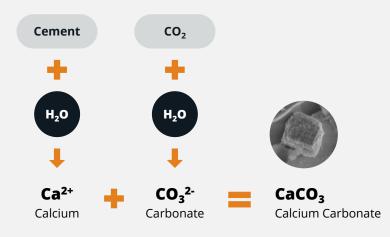
Installation

 CarbonCure equipment installed into existing concrete plans

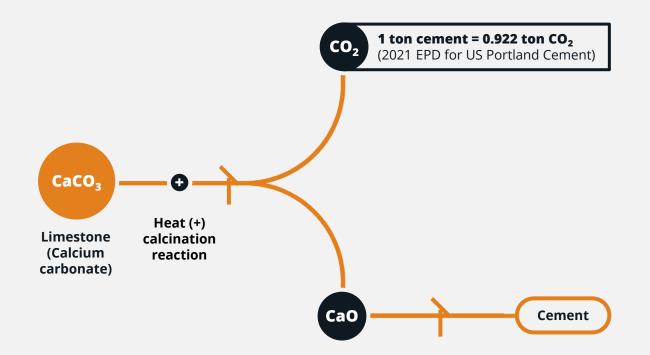
Integration

 CarbonCure software integrates seamlessly with the batching software

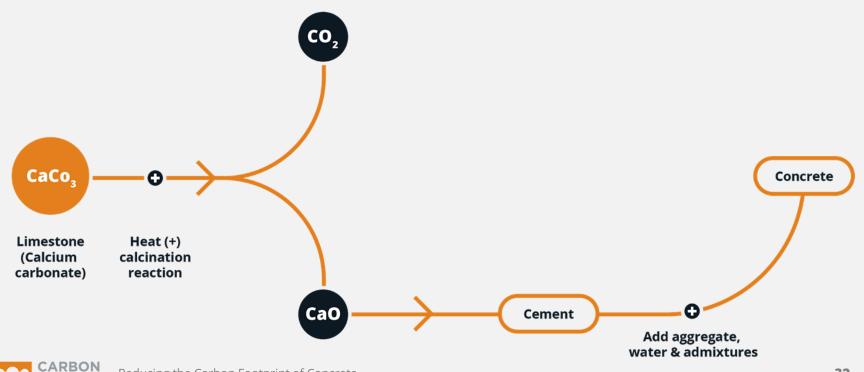
Injection



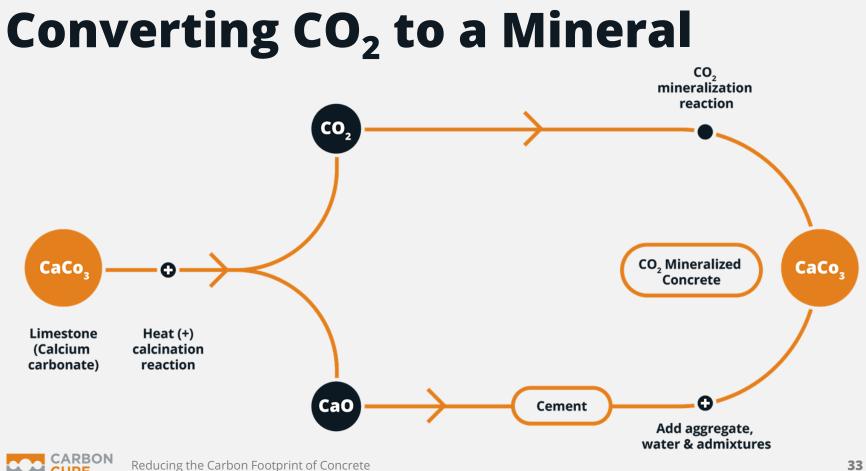
 The equipment injects a precise automated dosage of CO₂ into concrete as it mixes



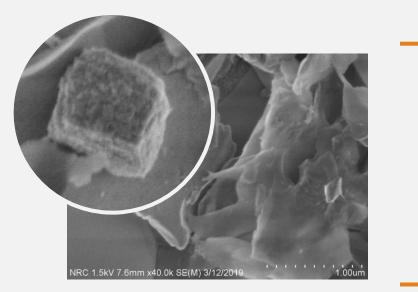
What Happens When CO₂ is Injected?


- CO₂ mineralization occurs
- CO₂ converts into CaCO₃ (solid limestone)

Cement Manufacturing Process



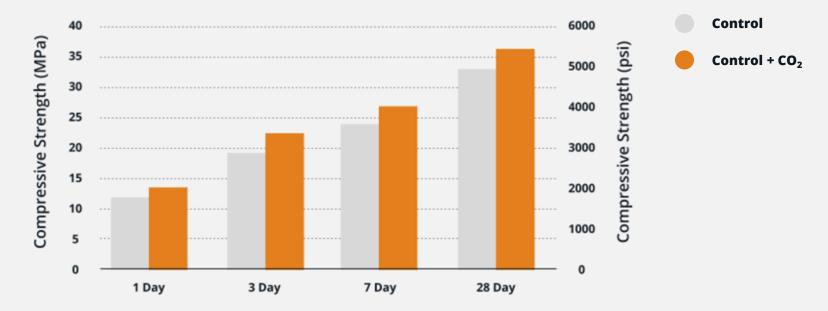
Converting CO₂ to a Mineral



URF

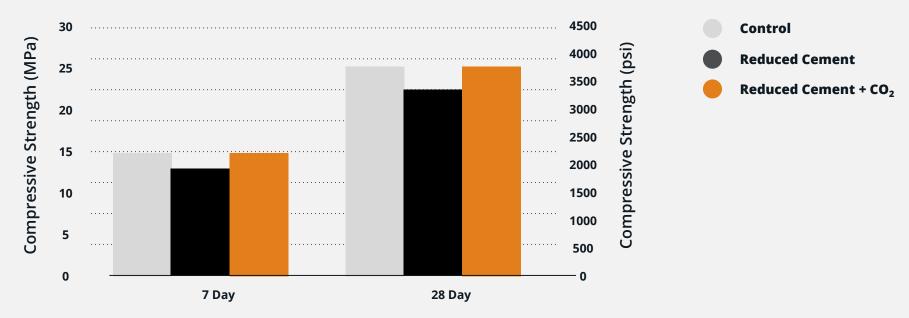
URF

Converting CO₂ to a Mineral


Carbonate product formed about 400 nm dimension

Nano-calcium carbonate

particles act as nucleation sites for hydration. Compressive strength benefits can arise from this interaction.


Compressive Strength Gain

Conclusion: The formation of a calcium carbonate nanomaterial **improves the compressive strength** of ready mix concrete. Source: "Calculating Sustainability Impacts of CarbonCure Ready Mix"

Mix Adjustment Opportunities

Conclusion: CarbonCure enables concrete producers to **reduce cement content** without sacrificing strength. **Source**: "Ready Mix Technology Trial Results".

CO₂ has a Neutral Impact on...

Fresh Properties

- Setting time
- Workability/slump
- Concrete pumping
- Air content
- Temperature
- Finishing

Hardened Properties

- Freeze-thaw
- pH
- Density
- Durability
- Color
- Texture

Note: Peer reviewed papers are available to support the above information at carboncure.com.

CarbonCure for Ready Mix

How Much CO₂ Can Be Saved?

15-30 Ibs CO_2 saved per yd³

CO₂ saved = CO₂ mineralized + CO₂ avoided by reducing cement
Avg. 5% reduction in GWP (stackable carbon benefit with SCMs)

725 Ponce

360,000 sq ft commercial office in Atlanta, GA

"Uzun+Case, with input from Thomas Concrete, specified the CarbonCure Technology to reduce the carbon footprint of 725 Ponce. We're proud to have saved 1.5 million pounds of CO_2 while maintaining our high-quality standards for concrete."

Rob Weilacher Engineer of Record, Uzun+Case

Supplier: Thomas Concrete

Concrete Usage: 48,000 yd³ of concrete made with CarbonCure **CO₂ Savings:** 1.5 million lbs

CO₂ Savings Equivalent: 888 acres of forest absorbing CO₂ for a year

Kapolei Interchange - Honolulu, HI

Concrete paving, Department of Transportation highway

"I am pleased to see HDOT moving ahead with CarbonCure, local concrete companies, and Hawaii Gas to reduce the levels of carbon dioxide emitted during the construction process."

David Ige Governor of The State of Hawai'i Supplier: Island Ready Mix

Owner:

Hawaii Department of Transportation

Project Size: 19,000 square feet

CO₂ Savings Equivalent: 30,000 lbs

LinkedIn – Mountain View, CA

Campus headquarters building

"LinkedIn is proud to support environmental consciousness in the built environment. The design of our new headquarters campus incorporates sustainable concrete solutions, including CarbonCure Technologies through our local concrete experts, Central Concrete."

> **Jennifer Mitchell** Senior Project Manager, GWS Design + Build Team at LinkedIn

Concrete Supplier:

Central Concrete Supply Co., a business unit of U.S. Concrete

Architect: STUDIOS Architecture

Building Description: 245,000 ft² office building and parking garage

Amazon HQ2 - Arlington, VA

"We are excited to invest in CarbonCure, a company producing stronger, more sustainable concrete, which will help Amazon and other companies meet The Climate Pledge, a commitment to be net-zero carbon by 2040. We are looking forward to lowering the carbon footprint of many of our buildings by using CarbonCure concrete, including in Amazon's HQ2 building in Virginia." **Concrete Supplier:** Miller & Long

Estimated CO₂ savings: 1,144 tonnes (1,261 tons)

Structural Engineer: Thornton Tomassetti

Kara Hurst

Vice President of Sustainability at Amazon

Estimated Completion: 2022

Austin, TX – UT Seay Expansion Concrete Producer: Lauren Concrete CO₂ Saved: 21.5 tonnes

Mountain View, CA – LinkedIn Campus Concrete Producer: Central Concrete CO_2 Saved: 240,000 lbs

Indianapolis, IN – Infosys Innovation Hub Concrete Producer: Irving Materials CO₂ Saved: 109 tonnes

Calgary, AB – East Deicing Apron Owner: YYC Calgary International Airport CO₂ Saved: 160 tonnes

Chicago, IL - McDonald's Flagship Concrete Producer: Ozinga CO_2 Saved: 13.6 tonnes

Kapolei, HI – Kapolei Interchange. Concrete Producer: Island Ready-Mix CO₂ Saved: 1,500 lbs

Atlanta, GA – Georgia Aquarium Concrete Producer: Thomas Concrete CO_2 Saved: 150 tonnes

Arlington, VA – Amazon HQ2 Concrete Producers: Miller & Long, Vulcan Materials CO₂ Savings Estimate: 1,043 tonnes

What's next for us? Reclaimed WashWater Technology

- **Stabilize** returned cementitious solids in RW slurry tank using CO₂
- Recycle stabilized solids back into concrete production (replacing virgin cementitious)
- Reduce offsite waste streams, helping producers achieve net zero discharge operation

How can you help reduce concrete's carbon impact?

- Communicate your commitment to embodied carbon reduction throughout the supply chain *early* and *often*
- Design strengths for what you need
- Use supplementary cementitious materials and/or low-carbon cement
- Remove unnecessary prescriptive concrete specs
- Consider **performance**-based concrete specs
- Specify and/or approve CO₂ mineralized concrete

Barriers to Innovation: Specs

Prescriptive specs may result in unnecessary limitations to sustainability improvements

Prescriptive Spec Minimum cement/cementitious requirement Consider Maximum supplementary cementitious content Maximum water/cement ratio

Performance Spec

Specify strength (eliminate minimum cement requirement)

Specify strength (eliminate maximum SCM requirement)

Use only when appropriate for exposure class and performance requirement

Specify Concrete Sustainably

Strategies for Low-Carbon Concrete:

- Performance-Based Specifications, not Prescriptive-Based Specifications
- Require cement replacement %
- Strength at 28, 56, and 84 Days
- Set maximum (not minimum) cement content

- Specify SCMs & Admixtures:
 - Fly Ash
 - Slag
 - Superplasticizers
 - CO₂ Mineralization

Easiest option? Ask your concrete producers what they can do!

Questions?

Build for the Future. Build with CarbonCure.

A building or infrastructure project may save as much CO₂ as 100s if not 1000s of acres of trees absorb over a year.

Who knew that building with concrete could be like planting trees?

www.carboncure.com
@CarbonCure
CarbonCure-Technologies
CarbonCure.Technologies

